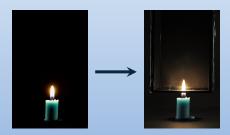


02 Plume of Smoke

Carina Kanitz

IYPT 2015 Team Germany

If a burning candle is covered by a transparent glass, the flame extinguishes and a steady upward stream of smoke is produced. Investigate the plume of smoke at various magnifications.



If a **burning candle** is covered by a transparent glass, the flame extinguishes and a steady upward stream of smoke is produced. Investigate the plume of smoke at various magnifications.

If a burning candle is **covered** by a transparent glass, the flame extinguishes and a steady upward stream of smoke is produced. Investigate the plume of smoke at various magnifications.

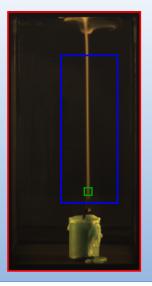
If a burning candle is covered by a transparent glass, the flame extinguishes and a **steady upward stream of smoke** is produced. Investigate the plume of smoke at various magnifications.

If a burning candle is covered by a transparent glass, the flame extinguishes and a steady upward stream of smoke is produced. **Investigate** the plume of smoke at **various magnifications**.

Phenomenon

Macroscopic Scale

- plume's basic physics
- · influence of the glass


Macroscopic Scale

- plume's basic physics
- · influence of the glass

Mesoscopic Scale

- · free flow of smoke
- · laminar and turbulent motion

Macroscopic Scale

- plume's basic physics
- influence of the glass

Mesoscopic Scale

- · free flow of smoke
- · laminar and turbulent motion

Microscopic Scale

- · motion of single particles
- · optical phenomenons

The smoke

- Definition: Mixture of solid particles and fluid droplets in a gaseous phase mostly resulting from combustion reactions
- · Smoke of a Candle:
 - · complete combustion of paraffin:

$$2 \ \textit{C}_{\textit{n}}\textit{H}_{2\textit{n}+2} + (3\textit{n}+1) \ \textit{O}_{2} \rightarrow 2\textit{n} \ \textit{CO}_{2} + 2(\textit{n}+1) \ \textit{H}_{2}\textit{0}$$

• incomplete combustion of paraffin - example:

$$C_{20}H_{42} + 19O_2 \rightarrow 6CO_2 + 8CO + 4C + C_2H_6 + 18H_2O$$

Macroscopic Scale

- plume's basic physics
- influence of the glass

Mesoscopic Scale

- · free flow of smoke
- · laminar and turbulent motion

Microscopic Scale

- motion of single particles
- optical phenomenons

Macroscopic Scale

Basic Explanation

- smoke behaves similiar to air
- temperature gradient
- buoyancy

Influence of the glass

- deceleration of smoke due to temperature gradient
- shape of the smoke plume
- isolation from environment

Basic explanation

 Rising of smoke through driving pressure

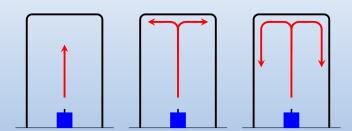
$$\Delta p = hg(\rho_2 - \rho_1)$$

• Dependence on local temperature

$$\rho \propto \frac{1}{T}$$

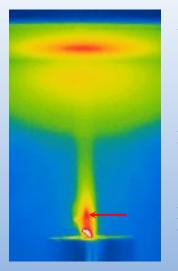
p: pressure

h: effective height

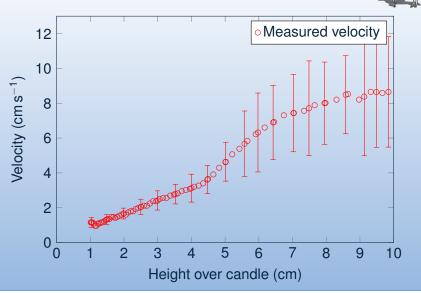

g: gravitational acceleration

 ρ : density

T: temperature


Motion of smoke in the glass

Predictions on velocity



Deceleration through backed up air

Acceleration through temperature gradient

Slow through opposite temperature gradient

Measurement of velocity

Macroscopic Scale

- plume's basic physics
- influence of the glass

Mesoscopic Scale

- free flow of smoke
- · laminar and turbulent motion

Microscopic Scale

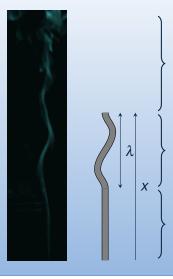
- · movement of single particles
- optical phenomenons

Characteristic numbers of flow

Reynolds number

$$Re = \frac{vd}{v}$$

with v flow velocity, d characteristic length and v kinematic viscosity


Prandtl number

$$Pr = \frac{v}{\lambda}$$

with v kinematic viscosity and λ thermal conductivity

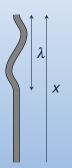
Fluid dynamics states

Turbulent flow (Re > Re_{crit})

- irregular and chaotic
- strong diffusivity and dissipation
- $\rightarrow \text{hardly describable}$

Transient flow ($Re \approx Re_{crit}$)

- Critical height x, wavelength λ
- x correlates to v_{crit}, depending on Q


Laminar flow (Re < Re_{crit})

- · Non diffusing velocity layers
- Gaussian velocity distribution profile

Correlation of transition with candle properties

"Mechanism for transition to turbulence in buoyant plume flow" Shigeo Kimura and Adrian Bejan

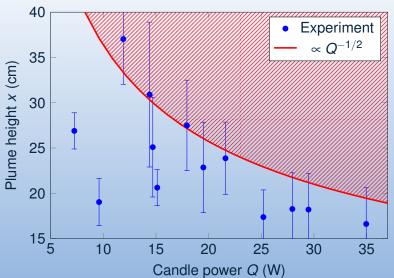
$$\frac{x}{x_0} = \left(\frac{Q}{Q_0}\right)^{-1/2}$$

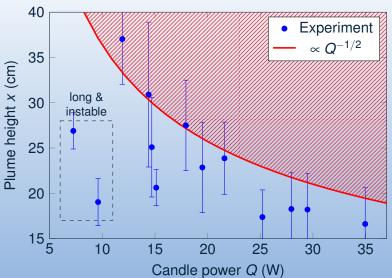

$$\frac{\lambda}{\lambda_0} = \left(\frac{Q}{Q_0}\right)^{-1/2}$$

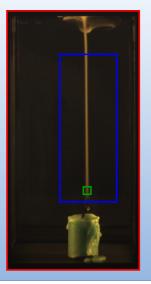
Assumptions:

- closed box
- Prandtl number O(1)
- · point heat source

Improved Assembly: Artifical Candle


Swaying motion


Measurement of transition height to candle power



Measurement of transition height to candle power

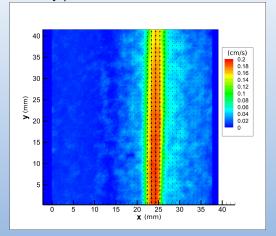
Macroscopic Scale

- plume's basic physics
- influence of the glass

Mesoscopic Scale

- · free flow of smoke
- · laminar and turbulent motion

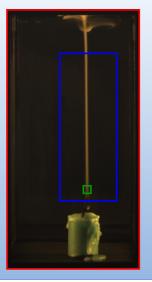
Microscopic Scale


- · motion of single particles
- · optical phenomenons

Microscopic Scale

Velocity profile inside laminar stream

Optical Effect



Possible Explanation of Optical Effects

Explanation	Expectation	Observations
Refraction	Rainbow-like	
Diffraction	Colored Interference	ALC: ALC:

Macroscopic Scale

- plume's basic physics
- influence of the glass

Mesoscopic Scale

- · free flow of smoke
- laminar and turbulent motion

Microscopic Scale

- · motion of single particles
- · optical phenomenons

Appendix

Relevant Parameters: Temperature

Influence of higher Temperature in the glass:

- Lower Velocity of rising plume of smoke due to lower temperature difference, so lower pressure difference
- Faster diffusion due to accelerated browne's molecular movement

Relevant Parameters: Shape of glass

Smoke follows shape of glass:

Heat input of the candle

Influence of higher heat input of the candle:

• lower transition height *x*:

$$\frac{x}{x_0} = \left(\frac{Q}{Q_0}\right)^{-\frac{1}{2}}$$

• lower transition wavelength λ :

$$\frac{\lambda}{\lambda_0} = (\frac{Q}{Q_0})^{-\frac{1}{2}}$$

- · Ratio between inertia and friction force
- Defined as $Re = \frac{vd}{v} = \frac{\rho vd}{\eta}$

Characteristic numbers of flow: Rayleigh number

Characteristic numbers of flow: Grashof number

- Used to describe flow in thermal convection
- Defined as $Gr = \frac{g\beta(T_s T_\infty)L^3}{v^2}$ with g earth acceleration β volumetric expansion coefficient T_s temperature T_∞ rest temperature L characteristic length V kinematic viscosity

Characteristic numbers of flow: Prandtl number

Ratio between kinemeatic viscosity and thermal conductivity

$$Pr = \frac{v}{B}$$

Assumed as unity

Characteristic numbers of flow: Froude number

· Ratio of inertia forces to gravitational forces

$$Fr = \frac{v^2}{gL}$$

with ν flow velocity, g earth acceleration, L characteristic length

The smoke

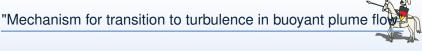
- Definition: Mixture of solid particles and fluid droplets in a gaseous phase mostly resulting from combustion reactions
- · Smoke of a Candle:
 - · complete combustion of paraffin:

$$2 C_n H_{2n+2} + (3n+1) O_2 \rightarrow 2n CO_2 + 2(n+1) H_20$$

• incomplete combustion of paraffin - example:

$$C_{20}H_{42} + 19O_2 \rightarrow 6CO_2 + 8CO + 4C + C_2H_6 + 18H_2O$$

Quadratic rainbow



Different candles

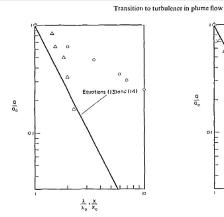


Fig. 3. The transition height and the wavelength as a function of heat input, in the absence of external noise. \bigcirc , x/x_0 , transition height. A, 2/20, wavelength.

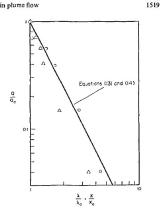
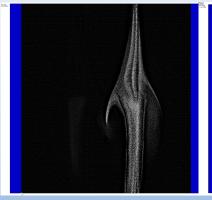
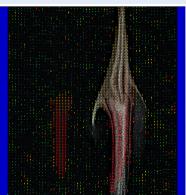




Fig. 4. The transition height and wavelength as a function of heat input. The enclosure wall was tapped by a finger. $O_1 x/x_0$ transition height. \triangle , λ/λ_0 , wavelength. $Q_0 = 55 \text{ W}$, $x_0 = 0.25 \text{ m}$, $\lambda_0 = 0.04 \, \text{m}.$

PIV - Transition

Airy function

Airy function¹:

$$I(r) = \left(\frac{\pi d^2}{4\lambda z}\right)^2 \left[\frac{2J_1\left(\frac{\pi dr}{\lambda z}\right)}{\left(\frac{\pi dr}{\lambda z}\right)}\right]^2$$

1 Neiman and Shaw: Coronas and iridescence in mountain wave clouds over northeastern colorado (2003)